MetodeEkspansi Laplace Metode Laplace adalah suatu teknik untuk menyederhanakan permasalahan dalam suatu sistem yang mengandung masukan dan keluaran, dengan melakukan transformasi dari suatu domain pengamatan ke domain pengamatan yang lain. contoh cara menghitung determinan (A) dengan ekspansi kofaktor (Ordo 4×4) Ekspansi kofaktor baris
MenghitungDeterminan dengan Metode Ekspansi Kofaktor. Determinan dari matriks \(A_{n\times n}=\left[{a_{ij}}\right]~\forall~i,j =\{1,2,3,\dots,n\}\) dapat dihitung dengan mengalikan entri-entri dalam suatu baris atau dalam suatu kolom dengan kofaktor-kofaktornya. Asalkan paham konsep dari ekspansi kofaktor dan mempunyai hitungan yang tepat
untukmencari determinan matrik A maka, detA = ad - bc Determinan dengan Ekspansi Kofaktor Determinan dengan Minor dan kofaktor A= -2 +3 = 1(-3) - 2(-8) + 3(-7) = -8 Determinan dengan Ekspansi Kofaktor Pada Kolom Pertama Pada dasarnya ekspansi kolom hampir sama dengan ekspansi baris seperti di atas. Tetapi ada satu hal yang membedakan
Caramenghitung determinan matriks 3×3 dengan ekspansi kofaktor. Karena jika kalian sudah mengetahui matriks ordo 3 × 3 invers matriks ordo 3 × 3. Prolog materi determinan matriks 3×3 contoh soal. Seperti yang kita ketahui, terdapat dua rumus dalam. Untuk mencari determinan matriks, ada baiknya kita terlebih dahulu.
Determinant The 2×2 matrix of. is invertible if and only if ad - bc ≠ 0. The expression ad-bc is a determinant of the matrix A. det (A) = ad - bc. or. After finds out the value of certain determinant of matrices, we could use the determinant for finding the inverse matrices as shown syntax below : Example : If.
21 Determinan dengan Ekspansi Kofaktor 2.1.1 Determinan dengan Minor dan kofaktor 2.1.7 Tes Determinan untuk Invertibilitas 2.2 Mencari determinan dengan cara Sarrus 2.3 Metode Sarrus hanya untuk matrix berdimensi 3x3 2.4 Menghitung Inverse dari Matrix 3 x 3 2.5 Sistem Linear Dalam Bentuk Ax = λx 3 Vektor dalam Ruang Euklide
minanmatriks dengan ukuran yang besar, sukar dilakukan jika hanya menggunakan de nisi determinan. Beberapa metode yang dapat digunakan untuk menghitung determinan matriks adalah metode reduksi baris, metode ekspansi Laplace/kofaktor dan metode kom-plemen Schur. Metode lain yang dapat digunakan adalah dengan mengubah ma-
Determinan(Bagian 1: menghitung determinan dengan reduksi baris) Determinan (Bagian 2: menghitung determinan dengan ekspansi kofaktor) Pranala video di Youtube untuk kedua bagian determinan klik di sini atau di sini; Latihan soal determinan; Vektor di ruang Euclidean (Bagian 1) Pranala video di Youtube di sini atau ini
ljYIFIC. 0% found this document useful 0 votes926 views8 pagesCopyright© © All Rights ReservedAvailable FormatsDOCX, PDF, TXT or read online from ScribdShare this documentDid you find this document useful?0% found this document useful 0 votes926 views8 pagesDeterminan Dengan Ekspansi KofaktorJump to Page You are on page 1of 8 You're Reading a Free Preview Pages 5 to 7 are not shown in this preview. Reward Your CuriosityEverything you want to Anywhere. Any Commitment. Cancel anytime.
Apa itu Ekspansi Kofaktor?Metode ekspansi kofaktor adalah suatu metode untuk menghitung determinan dengan menggunakan kofaktor yang mengutamakan kemampuan berhitung secara manual dan secara apa itu kofaktor?Metode SarrusMetode Kupu-KupuSebelum mengenal apa itu kofaktor, mari kita ingat kembali pada saat duduk di bangku SMA kita sudah mengenal dan memahami aturan sarrus untuk matriks 3×3 dan metode kupu-kupu untuk matriks 2×2.Perhatikan contoh berikut Didefinisikan matriks \A\ dan \B\ sebagai berikut $$A=\left[{\begin{array}{cc}a_{11}&a_{12}\\a_{21}&a_{22}\end{array}}\right],~B=\left[{\begin{array}{ccc}b_{11}&b_{12}&b_{13}\\b_{21}&b_{22}&b_{23}\\b_{31}&b_{32}&b_{33}\end{array}}\right]$$Kita akan menentukan determinan matriks \A\ dan \B\. Berdasarkan metode kupu-kupu pada matriks \A\ kita peroleh $$\begin{aligned}\text{det}A&=a_{11}a_{22}-a_{12}a_{21}\\&=a_{11}-1^{1+1}a_{22}+a_{12}-1^{1+2}a_{21}\\&=a_{11}-1^{1+1}\left{a_{22}}\right+a_{12}-1^{1+2}\left{a_{21}}\right\end{aligned}$$dan pada matriks \B\ dengan berdasarkan aturan sarrus dan kupu-kupu kita peroleh $$\begin{aligned}\text{det}B&=b_{11}b_{22}b_{33}+b_{12}b_{23}b_{31}+b_{13}b_{21}b_{32}-b_{13}b_{22}b_{31}-b_{11}b_{23}b_{32}-b_{12}b_{21}b_{33}\\&=b_{11}-1^{1+1}\left{b_{22}b_{33}-b_{23}b_{32}}\right+b_{12}-1^{1+2}\left{b_{21}b_{33}-b_{23}b_{31}}\right+b_{13}-1^{1+3}\left{b_{21}b_{32}-b_{22}b_{31}}\right\\&=b_{11}-1^{1+1}\left{\begin{array}{cc}b_{22}&b_{23}\\b_{32}&b_{33}\end{array}}\right+b_{12}-1^{1+2}\left{\begin{array}{cc}b_{21}&b_{23}\\b_{31}&b_{33}\end{array}}\right+b_{13}-1^{1+3}\left{\begin{array}{cc}b_{21}&b_{22}\\b_{31}&b_{32}\end{array}}\right\end{aligned}$$Dari pernyataan di atas bahwa determinan matriks \B\ dapat dicari dengan menggunakan determinan matriks yang lebih kecil, begitu pula pada matriks \A\.Kemudian pada contoh di atas tanpa kita sadari, juga telah menerapkan konsep kofaktor, untuk lebih jelasnya, berikut definisi kofaktor Definisi Kofaktor Jika \A_{n\times n}=\left[{a_{ij}}\right]\ maka kofaktor dari \a_{ij}\ dapat lambangkan \C_{ij}\ dan \C_{ij}=-1^{i+j}M_{ij}\, dengan \M_{ij}\ menyatakan minor dari \a_{ij}\ dan \M_{ij}\ adalah determinan dari submatriks \A\ yang diperoleh dengan mencoret semua entri pada baris ke-\i\ dan semua entri pada kolom ke-\j\.Baca juga Definisi Fungsi Determinan dengan Perkalian ElementerContoh 1 Tentukan minor dan kofaktor dari entri \a_{12}, a_{31}\ dan \a_{23}\ pada matriks \A\ berikut $$A=\left[{\begin{array}{ccc}2&-1&1\\1&0&-1\\2&-2&0\end{array}}\right]$$Penyelesaian Minor \a_{12}\ diperoleh dengan cara mencoret semua entri pada baris ke-\1\ dan semua entri pada kolom ke-\2\, kemudian dihitung determinannya $$M_{12}=\left{\begin{array}{cc}1&-1\\2&0\end{array}}\right=10-12=2$$dan kofaktor dari \a_{12}\ adalah $$C_{12}=-1^{1+2}M_{12}=-1\times 2=-2$$Dengan cara yang sama kita cari minor dan kofaktor dari \a_{31}\ dan \a_{23}\.$$M_{31}=\left{\begin{array}{cc}-1&1\\0&-1\end{array}}\right=1~\text{sehingga}~C_{31}=-1^{3+1}M_{31}=1$$dan$$M_{23}=\left{\begin{array}{cc}2&-1\\2&-2\end{array}}\right=-2~\text{sehingga}~C_{23}=-1^{2+3}M_{23}=2$$Selanjutnya kita akan menghitung determinan suatu matriks persegi dengan menerapkan konsep ekspansi Determinan dengan Metode Ekspansi KofaktorDeterminan dari matriks \A_{n\times n}=\left[{a_{ij}}\right]~\forall~i,j =\{1,2,3,\dots,n\}\ dapat dihitung dengan mengalikan entri-entri dalam suatu baris atau dalam suatu kolom dengan kofaktor-kofaktornya. Kemudian menjumlahkan semua hasil-hasil kali yang dihasilkan, atau dapat ditulis $$\text{det}A=a_{i1}C_{i1}+a_{i2}C_{i2}+\dots+a_{in}C_{in}$$Karena baris ke-\i\ menjadi acuan, maka disebut juga ekspansi kofaktor sepanjang baris ke-\i\$$\text{det}A=a_{1j}C_{1j}+a_{2j}C_{2j}+\dots+a_{nj}C_{in}$$Karena kolom ke-\j\ menjadi acuan, maka disebut juga ekspansi kofaktor sepanjang kolom ke-\j\Contoh 2 Didefinisikan matriks \A\ sebagai berikut $$A=\left[{\begin{array}{ccc}3&0&-2\\2&5&1\\-1&3&1\end{array}}\right]$$Dengan metode ekspansi kofaktor tentukan determinan matriks \A\.Penyelesaian Tips pilih baris atau kolom yang mengandung banyak unsur/entri nol agar perhitungan menjadi lebih pilih baris pertama \a_{12}=0\ sehingga kita dapat tuliskan $$\begin{aligned}\text{det}A&=a_{11}C_{11}+a_{12}C_{12}+a_{13}C_{13}\\&=a_{11}C_{11}+a_{13}C_{13}\dots*\end{aligned}$$Kemudian kita cari nilai dari masing-masing kofaktor $$M_{11}=\left{\begin{array}{cc}5&1\\3&1\end{array}}\right=2~\Rightarrow~C_{11}=-1^{1+1}2=2$$$$M_{13}=\left{\begin{array}{cc}2&5\\-1&3\end{array}}\right=11~\Rightarrow~C_{13}=-1^{1+3}11=11$$Sehingga jika kita subtitusikan ke persamaan \*\ akan diperoleh $$\begin{aligned}\text{det}A&=a_{11}C_{11}+a_{13}C_{13}\\&=32+-211\\&=-16\end{aligned}$$Baca juga Alasan Metode Sarrus Hanya Berlaku pada Matriks 3×3Kelebihan Metode Ekspansi Kofaktor1. Dapat diterapkan pada matriks persegi 2×2 atau metode sarrus terbatas pada ordo \3 \times 3\ maka untuk menghitung determinan dengan ordo yang lebih tinggi \4\times 4, 5\times5,\dots,n\times n\ dapat menggunakan metode ekspansi dimulai dari matriks 2×2 ?Hal ini karena pada matriks 1×1 dalam mencari determinannya cukup menggunakan definisi saja, dimana jika terdapat matriks \A_{1\times1}=\left[a_{11}\right]\ maka determinannya adalah \\text{det}A=a_{11}\.2. Efektif untuk yang suka perhitungan manual dan secara ini didapat dari perbandingan dengan metode lainnya seperti aturan sarrus dan reduksi baris, dimana masing-masing mempunyai kelebihan tersendiri. Ekspansi kofaktor juga sekaligus dapat melatih ketahanan dalam berhitung, kita ambil contoh pada saat mencari determinan \A_{5\times 5}\ maka kita akan menemukan determinan dari submatriks dari \A\ yang berukuran \4 \times 4\, dimana determinan dari submatriks tersebut kita hitung juga dengan ekspansi kofaktor sehingga akan ditemukan determinan submatriks dari submatriks \A\ yang berukuran \3 \times 3\ dan paham konsep dari ekspansi kofaktor dan mempunyai hitungan yang tepat maka metode ekspansi kofaktor akan efektif Konsep kofaktor berguna untuk mencari invers saat duduk dibangku SMA pasti sudah mengenal rumus mencari invers berikut $$A_{n\times n}^{-1}=\frac{\text{Adjoin}A}{\text{det}A}$$Pada persamaan tersebut terdapat Adjoin\A\ yang didefinisikan sebagai transpose matriks kofaktor dari \A\ dapat kita tuliskan $$\text{Matriks kofaktor A}=\left[{\begin{array}{cccc}C_{11}&C_{12}&\dots&C_{1n}\\C_{21}&C_{22}&\dots&C_{2n}\\\vdots&\vdots&\ddots&\vdots\\C_{n1}&C_{n2}&\dots&C_{nn}\end{array}}\right]$$Maka $$\text{Adjoin}A=\left[{\begin{array}{cccc}C_{11}&C_{21}&\dots&C_{n1}\\C_{12}&C_{22}&\dots&C_{n2}\\\vdots&\vdots&\ddots&\vdots\\C_{1n}&C_{2n}&\dots&C_{nn}\end{array}}\right]$$Dari kenyataan tersebut, jelas bahwa konsep kofaktor dapat dimanfaatkan untuk mencari invers matriks. Sehingga tidak ada salahnya mempelajari ekspansi kofaktor, namun disamping itu metode ekspansi kofaktor menurut penulis masih terdapat Metode Ekspansi KofaktorMenurut penulis metode ekspansi kofaktor dalam segi kecepatan masih kurang jika dibandingkan dengan metode campuran yaitu gabungan dari macam-macam metodesarrus, kupu-kupu, ekspansi kofaktor, reduksi baris dan lainnya yang dipadukan dengan sifat-sifat postingan ini kita tidak akan membahas mengenai metode reduksi baris. Sehingga sekarang untuk membuktikan argumen tersebut, saya asumsikan kita sudah memahami metode reduksi 3 Misalkan kita akan menghitung determinan matriks \A\ sebagai berikut $$\text{det}A=\left{\begin{array}{cccc}1&4&5&-2\\2&7&2&1\\1&6&4&-1\\-3&3&1&2\end{array}}\right$$Kita akan mereduksi matriks tersebut dengan mengenakan operasi baris elementer \-2R_{1}+R_{2}\rightarrow R_{2}\\-R_{1}+R_{3}\rightarrow R_{3}\\3R_{1}+R_{4}\rightarrow R_{4}\secara berturut-turut sehingga kita peroleh $$\text{det}A=\left{\begin{array}{cccc}1&4&5&-2\\0&-1&-8&5\\0&2&-1&1\\0&15&16&-4\end{array}}\right$$Nah, selanjutnya kita kenakan metode ekspansi kofaktor, kita pilih entri-entri pada kolom pertama dimana \a_{11}=1\ dan \a_{21}=a_{31}=a_{41}=0\.$$\begin{aligned}\text{det}A&=a_{11}C_{11}+a_{21}C_{21}+a_{31}C_{31}+a_{41}C_{41}\\&=C_{11}\end{aligned}$$Dengan aturan sarrus kita peroleh $$\begin{aligned}M_{11}&=\left{\begin{array}{cccc}-1&-8&5\\2&-1&1\\15&16&-4\end{array}}\right\\&=-1-1-4+-8115+5216-5-115-1116-82-4\\&=63\end{aligned}$$Sehingga kita peroleh $$\text{det}A=C_{11}=-1^{1+1}M_{11}=163=63$$Jadi dengan menggunakan metode campuran akan lebih efektif, namun kita dituntut untuk sekreatif mungkin untuk menyusun alur perhitungan yang termudah.